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ABSTRACT 
 

County-average hydrogen values are calculated for the part 2, 1999 Information 

Collection Request (ICR) coal-quality data, published by the U.S. Environmental Protection 

Agency.  These data are used together with estimated, county-average moisture values to 

calculate average net heating values for coal produced in U.S. counties.  Finally, 10 draft maps of 

the contiguous U.S. showing the potential uncontrolled sulfur, chlorine and mercury emissions of 

coal by U.S. county-of-origin, as well as expected mercury emissions calculated for existing 

emission control technologies, are presented and discussed. 
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INTRODUCTION 

Background 

Switching to low-mercury-emission coal may be an effective strategy to comply with 

impending regulations that are intended to reduce mercury emissions from electric utilities.  For 

example, despite proven emission control technology, burning low-sulfur coal is the most 

popular method to reduce sulfur emissions.  Because technology to reduce mercury emissions is 

considerably less certain, burning low-mercury coal is a likely method to reduce mercury 

emissions.  Like sulfur, the amount of mercury in U.S. coal shows substantial geographic 

variation.  Furthermore, mercury emissions from similar types of power plants are largely 

correlated with the amount of mercury in the coal.  However, unlike sulfur, mercury emissions 

also vary with the abundance of other elements in the coal such as chlorine and sulfur, which 

influence mercury capture by emission control technologies.  Consequently, mercury emission 

factors vary according to the relative abundance of several elements in the coal, and are specific 

to different emission control technologies.   

This project is using Geographic Information System technology (ArcView GIS) to 

create detailed maps to show where U.S. coal with low mercury and acid-gas emissions might be 

found.  The map series will show geographic variation of mercury, chlorine, and sulfur in coal, 

as well as the mercury emission penalty calculated for data aggregated by U.S. county-of-origin 

using equations specific to power plants classified by boiler type and flue gas emission controls.  

Removing mercury from flue gas is a technically complex task – different technologies will be 

required for different coals.  Maps showing the geographic variation of mercury and acid gas 

emission factors for U.S. coal will help locate the best coal for each technology and identify the 

best technology for each coal. 
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Coal quality data used in this study were described in a previous report (Quick and 

others, 2004).  Briefly, these data were selected from five data sets and include:  19,507 FERC 

423 data records (USEIA, 2003a), 25,818 ICR data records (USEPA, 2003), 5,602 CTRDB data 

records (USEIA, 2003b), 5,045 COALQUAL data records (Bragg and others, 1997), and 73 

PSU-DOE data records (Anonymous, 1990; Davis and Glick, 1993; Scaroni and others, 1999).   

Recent Developments 

The U.S. Environmental Protection Agency (USEPA) is expected to issue new rules 

limiting mercury emissions from coal-fired electric power plants by March 15, 2005, with 

enforcement beginning as early as April 2008.  The proposed rules are described in the USEPA 

(2004) federal register notice; two different options are described in the notice.  

The Maximum Achievable Control Technology (MACT) option would require each 

power plant to limit mercury emissions according to the rank of the coal burned, with special 

limits for plants burning waste coal (refuse) or using integrated, combined-cycle technology 

(IGCC).  The proposed MACT emission limits are listed in table 1.  

Table 1.  Proposed MACT mercury emission limits (section 112, MACT rule option) for existing and new 

coal-fired electric utility steam generating units (USEPA, 2004, tables 1 and 2, pages 4662 and 4663). 

  Input based limit  Output based limit 

  
pounds Hg per trillion gross Btu

of coal 
 pounds Hg x 10-6 per 

gross MWh manufactured
Existing  bituminous 2.0 or 21  
Plants subbituminous  5.8 or 61  
 lignite 9.2 or 98  
 IGCC 19.0 or 200  
 refuse 0.38 or 4.1  
New  bituminous  6 
Plants subbituminous  20 
 lignite  62 
 IGCC  20 
 refuse  1.1 
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The cap-and-trade option would limit total mercury emissions from all power plants to a 

maximum 15 tons per year by 2018.  Each power plant would be required to have mercury 

emission allowances sufficient to equal its annual mercury emissions.  The allowances would be 

distributed by state or federal administrators, and could be used, saved, purchased, or sold.  The 

USEPA (2004) cap-and-trade proposal allocates allowances to U.S. States according to their 

proportional share of coal energy consumption, modified by the rank of the coal consumed.  A 

state’s fractional share of the proposed 15-ton cap would be calculated as its average coal energy 

consumption (highest annual average for 3 of 4 years between 1998 and 2002, of the summed 

energy content of coal burned in electric utilities), multiplied by a factor of 1 for bituminous, 

1.25 for subbituminous, and 3 for lignite rank coal, and finally divided by the sum of the results 

calculated for all 50 states.  Additionally, under the cap-and-trade rule, newly constructed power 

plants would need to meet the same standards as those listed in table 1 for new plants under the 

proposed MACT rule.  Although the form of the final rule remains uncertain, the proposed 

emission limits shown in table 1 are useful benchmarks to evaluate the geographic variation of 

potential mercury emissions.  

 

Scope of This Report 

This report describes the progress made during the second six months of this 24-month 

project.  Results of tasks 4, 5, and 6 (figure 1) are described and discussed. 
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Figure 1.  Schedule of project tasks. 
 

EXECUTIVE SUMMARY 

Draft maps showing the geographic variation of mercury and acid gas emission factors 

for U.S. coals were constructed using coal assay data aggregated by U.S. county-of-origin.  

Specific tasks accomplished during the second six months of this two-year project include:  

• Coal hydrogen values were estimated for the ICR data using equations based on selected 

COALQUAL data records. 

• Net coal heating values were calculated for the ICR data by U.S. county-of-origin.  

• Published emission factors that predict mercury capture for power plants classified by air 

pollution controls were selected and applied to the ICR data. 

• Draft maps were made using ICR data aggregated by county-of-origin.  The maps show 

potential uncontrolled mercury, sulfur, and chlorine emissions, as well as predicted 

mercury emissions from coal burned in power plants classified by air pollution controls.  
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• High-mercury coal is produced in parts of Oklahoma, Texas, Ohio, Pennsylvania, 

Kentucky, Alabama, and Tennessee, whereas low-mercury coal is common in the western 

U.S., Eastern Interior Province, and the Central Appalachian Region. 

• Coal from the Northern Appalachian Region (Ohio and parts of Pennsylvania) has notably 

high mercury concentrations compared to U.S. coal produced elsewhere.   

• Much subbituminous and some lignite coal should comply with the proposed MACT rule 

using existing technology.  Bituminous compliance coal for power plants with Electrostatic 

Precipitator (ESP) controls is rare.  Plants equipped with Flue Gas Desulfurization (FGD) 

controls may find bituminous compliance coal in some western U.S. counties, the Eastern 

Interior Province, and the Central Appalachian Region.  With notable exceptions (for 

example, numerous counties in Ohio and the western U.S.), fabric filters may be an 

effective technology for bituminous coal. 
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EXPERIMENTAL 

The proposed MACT rule includes both input-based (pounds Hg per trillion Btu) and 

output-based (pounds Hg x 10-6 per megawatt-hour electricity manufactured) emission limits 

(table 1).  The output-based limits assume 32 percent efficiency (10,667 gross Btu/kilowatt-hour) 

for existing power plants and 35 percent efficiency (9,833 gross Btu/kilowatt-hour) for new 

power plants (USEPA, 2004).  Although the USEPA used the gross heating value of coal1 to 

calculate the output-based emission limits (Cole, 2003), figure 2 shows that output-based 

emissions are better calculated from fuel emission factors expressed on a net energy basis.  

Accordingly, we use emission factors expressed on a net energy basis to calculate output-based 

emissions.  This required that we calculate county-average, ICR net heating values.   

 
Figure 2.  Emissions expressed on an output basis (vertical axes) are better estimated if the fuel emission 

factor is expressed on a net energy basis (right plot) rather than on a gross energy basis (left plot).  Data 

show output-based carbon emissions calculated by Juniper (1998) for commercial coals in a model 500 

MW plant equipped with ESP and FGD emissions controls. 

 

                                                 
1 The gross coal heating value, (also called the higher heating value) is the familiar Btu/lb (or MJ/kg) value reported 
from the laboratory.  The gross heating value is measured by using a high-pressure, constant-volume combustion 
bomb.   Because water vapor from combustion condenses inside the combustion bomb the gross heating value 
includes the latent heat of water vapor.  Unlike the laboratory combustion bomb, combustion in a coal-fired boiler 
occurs at constant pressure and moisture from combustion exits the boiler with the flue gas.  Consequently, the net 
heating value (also called the lower heating value) does not include the latent heat of water vapor and is a better 
measure of the energy available to the boiler than the gross heating value.    
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Calculation of the Net Heating Value  (Task 4) 

The net heating value is calculated as: 

   ( )HMBtuBtu grossnet +−= 1119.07.92     (1) 

where: Btu gross is the familiar Btu per pound value reported from the laboratory and expressed on 

a moist, whole-coal basis, 

M is the weight percent moisture content of the coal, 

H is the weight percent hydrogen of the coal (not including hydrogen in coal moisture) 

expressed on a moist, whole-coal basis,  

0.1119 is the gravimetric factor applied to the moisture value (M) to obtain the weight 

percent hydrogen in coal moisture and, 

92.7 is the Btu penalty, which is largely due to the latent heat of water vapor, which is 

lost from the boiler with the combustion flue gas. 

Note that the ICR data do not include moisture or hydrogen values, which are required for 

equation 1.  County-average, ICR moisture values were estimated in an earlier report (Quick and 

others, 2004). County-average ICR hydrogen values were calculated using predictive equations 

obtained by regression analysis, which is described below. 

 

Predicting ICR Coal Hydrogen Values 

A multivariate regression method was applied to selected COALQUAL data (Mott-

Spooner values within ±250 Btu) to develop a set of geographically specific equations to predict 

coal hydrogen content using dry-basis Btu/lb, ash, and sulfur values.  The equations were 

validated using the PSU-DOE data, and used to estimate ICR coal hydrogen values.   

The dependent COALQUAL variable was dry-basis hydrogen.  Note that moist-basis 

hydrogen values, which include hydrogen in coal moisture, are listed in the COALQUAL data 
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set.  Consequently, the COALQUAL hydrogen values were adjusted to a dry basis by subtracting 

the stochiometric contribution of water to hydrogen (0.1119 x moisture), and multiplying the 

result by 
moisture−100
100  (ASTM, 2000a). 

The four independent variables used in the regression analysis (Btudmmf, Btudmmf
2, MMParr, dry, 

and lbs S/million Btu) were calculated for the selected COALQUAL data records using the 

equations: 

( )
)55.008.1(100

50100

drydry

drydry
dmmf

SAsh

SBtu
Btu

+−

−×
=      (2) 

dmmfdmmfdmmf BtuBtuBtu ×=2        (3) 

drydrydryParr SAshMM 55.008.1, +=       (4) 

100
106

dry

dry

S
Btu

BtumillionSlbs ×=       (5) 

where,   Btudry is the dry-basis Btu per pound value, 

  Sdry is the dry-basis weight percent sulfur, and 

  Ashdry is the dry-basis weight percent ash. 

Although the regression equations were obtained using relationships observed in the 

COALQUAL data, they were used to predict ICR coal hydrogen values.  Consequently, the 

selection of the independent variables was necessarily constrained by the available ICR assay 

data (Btu/lb, ash, S, Cl, Hg, and estimated moisture).  Considering this constraint, the 

independent variables were selected to indicate coal rank, (Btudmmf and Btudmmf
2), coal grade 

(MMParr,dry), and coal type (lbs S/million Btu), all of which may influence the hydrogen content of 

coal.  For example, the influence of coal rank is illustrated in figure 3, which shows that coal 
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hydrogen increases slightly through the coalification series to reach a maximum in the high 

volatile A bituminous stage, and then decreases as rank advances to the anthracite stage.   

Btu/lb (m,mmf) Fixed Carbon (wt.%, d,mmf)

•
•

•
•••

•••

•
••••

70 80 90 100

•

•
•

•
•••••

•
•

• •
•

• •
•

•• •
•

••
• ••

•

•
• ••

• • •••
••••

•• ••• •••••
•

•

1

2

3

4

5

6

7

7,000 9,000 11,000 13,000 15,000

Lignite Sub-
bituminous

Bituminous Anthracite

A AAB BC C

high volati le low
volatile

medium
volatile semi-

 
Figure 3.  Variation of coal hydrogen with ASTM (1990) coal rank. Constructed using PSU-DOE data. 

Note that the ASTM rank classification (figure 3) requires two parameters: (1) the Btu 

value on a moist, mineral-matter-free basis [Btu/lb (m,mmf)] and (2) the fixed carbon value on a 

dry, mineral-matter-free basis [Fixed Carbon (d,mmf)].  Regrettably, neither parameter could be 

used as an independent variable in the regression analysis to predict coal hydrogen.  We used the 

Btu value on a dry, mineral-matter-free basis (instead of the moist, mineral-matter-free basis 

used in the ASTM rank classification) because the COALQUAL moisture values are 

systematically lower than those observed in other data sets (figure 4).  The fixed carbon 

parameter could not be used because fixed carbon values are not included in the ICR data. 
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Figure 4.  COALQUAL moisture values are lower than moisture values for other data sets.  Notes: The 

ICR moisture values are estimated, county-average, as-shipped values.  The CTRDB, and COALQUAL 

data points show measured, county-average moisture values (as-received basis).  The PSU-DOE data 

points show equilibrium moisture values for single coal assays.  Data from U.S. counties with medium 

volatile bituminous or higher rank coal are not shown.  Also not shown are data for 46 counties included 

in the COALQUAL data where the average dry, mineral-matter-free Btu value is less than 12,000 (the 

ICR, CTRDB, and PSU-DOE data do not include data records where the dry, mineral-matter-free Btu/lb 

value is less than 12,000). The Btu/lb (dry, mineral-matter-free) values were calculated using equation 2 

(see text).  Moisture (mineral-matter-free) (Mmmf) was calculated as: Mmmf = Moisture [100/(1.08 Ashmoist + 

0.55 Sulfurmoist)].  The best-fit lines correspond to: ICR Mmmf = 1.82E-6 Btu/lbd,mmf
 2  - 6.22E-2 Btu/lbd,mmf + 

533, (R2 = 0.88); CTRDB Mmmf = 1.92E-6 Btu/lbd,mmf
 2 - 6.47E-2 Btu/lbd,mmf + 549, (R2 = 0.83); PSU-DOE 

Mmmf = 2.05E-6 Btu/lbd,mmf
 2 - 6.88E-2 Btu/lbd,mmf + 576, (R2 = 0.92); and COALQUAL Mmmf = 1.17E-6 

Btu/lbd,mmf
 2 - 4.05E-2 Btu/lbd,mmf + 349, (R2 = 0.94). 
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The relationship between coal rank and coal hydrogen (figure 3) also shows that 

hydrogen declines at higher ranks with increasing fixed carbon.  The sharp decline of hydrogen 

at high rank shown in figure 3 shows that different equations are required for high and low-rank 

coals.  Accordingly, fixed carbon values listed in the COALQUAL data were used to identify 

U.S. counties with high-rank coal.  COALQUAL data values from these counties (Btudmmf, 

Btudmmf
2, MMParr,dry, and lbs S/million Btu values) were used to establish equations to predict the 

hydrogen content of high-rank coal, and the equations were applied to the ICR data originating 

from the same counties.   

Attempts to develop a single equation to predict hydrogen for high volatile A bituminous 

(hvAb) and lower rank coals gave unsatisfactory results.  The results overestimated coal 

hydrogen in some geographic regions and underestimated coal hydrogen in others.  For example, 

the multiple regression equation based on all the COALQUAL data for hvAb and lower rank 

coal, showed average residuals of -0.15% hydrogen for Western Interior coal and +0.23% 

hydrogen for Gulf Coast coal.  To avoid these systematic errors, equations to predict coal 

hydrogen were determined for coal from each of the geographic regions shown in figure 5.   

The regression equations used to predict coal hydrogen in this report are described in 

table 2.  Several results are noteworthy.  Excluding high-rank coal, relatively large t-statistic 

values, and consistently negative coefficients for the coal grade parameter (MMParr,dry) show the 

strong influence of mineral matter content on coal hydrogen; coal hydrogen declines with 

increasing mineral content.  The general lack of significance (t-statistic <2) for the rank 

parameter (Btudmmf) for coal from the Northern Great Plains and the High Rank groups may be 

due to small range of variation of the Btu variable in coal from these areas.  Although the type 

parameter (lbs S/million Btu) is typically the least significant of the independent variables, its 
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generally positive coefficient is consistent with the geologic enrichment of coal hydrogen due to 

the preservation of otherwise labile hydrogen-rich compounds by an early diagenetic natural 

vulcanization process where aliphatic compounds are cross-linked by hydrogen sulfide from 

sulfate-reducing bacteria (Sinninghe Damste and others, 1989).  The inability of the sulfur 

variable to predict coal hydrogen for coal from 5 of the 9 groups (t-statistic <2) is also 

noteworthy and may have varied origins; possibilities include (1) a late-stage abiogenic sulfide 

contribution to Western Interior coal (after diagenetic loss of labile hydrogen), (2) greater initial 

hydrogen of geologically younger (western U.S.) peat-forming biomass (more H-rich cellulose; 

Robinson, 1990) with early bacterial stripping of hydrogen by methanogenic bacteria, which 

thrive in the absence of dissolved sulfate (Belyaev and others, 1980), and (3) catagenetic loss of 

hydrogen associated with sulfur in aliphatic structures, as aliphatic sulfur is lost or transformed 

into aromatic sulfur at higher ranks (Maes and others, 1997; Gorbaty and Kelemen, 2001). 

 

Verification of Equations to Predict Coal Hydrogen 

The geographically specific equations used to predict coal hydrogen are described in 

table 2.  These equations were applied to the PSU-DOE data to verify their accuracy.  Figure 6 

shows the near 1:1 correspondence between the measured PSU-DOE hydrogen values and the 

predicted PSU-DOE hydrogen values.  Error bars on the figure correspond to an assay 

reproducibility of 0.3% hydrogen (ASTM, 2000b) and show that most of the scatter can be 

attributed to the limited precision of the hydrogen assay.  The departure of two, low-hydrogen 

coals (anthracite rank) from the forced regression line suggests that the regression model is not 

well suited to predict the hydrogen content of anthracite.   
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Table 2.  List of variables, coefficients, and statistics for geographically specific regression equations 

used to predict the hydrogen content of coal (see equations 2 to 5 in text for variable descriptions).  

Data Group variable name coefficient t-statistic equation statistics 
Intercept -56.22 -14.9 Northern 

Appalachian Btudmmf
2 -2.82 E-07 -16.4 adjusted R2 = 0.75

 Btudmmf  8.35 E-03 16.4 standard error = 0.18
 MMParr,dry -5.34 E-02 -49.1 
 lbs S/million Btu  5.97 E-02 12.0 observations = 1028

Intercept -55.81 -18.1 Central 
Appalachian Btudmmf

2 -2.76 E-07 -19.5 adjusted R2 = 0.74

 Btudmmf  8.22 E-03 19.7 std. error = 0.19
 MMParr,dry -5.10 E-02 -39.6 
 lbs S/million Btu  1.06 E-01 12.7 observations = 756

Intercept -65.88 -13.3 Southern 
Appalachian Btudmmf

2 -3.19 E-07 -14.3 adjusted R2 = 0.71

 Btudmmf  9.55 E-03 14.4 std. error = 0.21
 MMParr,dry -5.145 E-02 -36.0 
 lbs S/million Btu  7.323 E-02 9.4 observations = 647

Intercept -41.39 -2.8 Eastern  
Interior Btudmmf

2 -2.11 E-07 -3.0 adjusted R2 = 0.73

 Btudmmf  6.30 E-03 3.1 std. error = 0.15
 MMParr,dry -5.33 E-02 -17.9 
 lbs S/million Btu  2.55 E-02 2.9 observations = 220

Intercept -4.54 -0.6 Western 
Interior Btudmmf

2 -3.54 E-08 -0.9 adjusted R2 = 0.82

 Btudmmf  1.21 E-03 1.1 std. error = 0.19
 MMParr,dry -5.00 E-02 -14.2 
 lbs S/million Btu  2.94 E-03 0.3 observations = 170

Intercept 20.97 2.5 Gulf  
Coast Btudmmf

2  1.35 E-07 2.4 adjusted R2 = 0.73

 Btudmmf -2.95 E-03 -2.2 std. error = 0.23
 MMParr,dry -3.95 E-02 -10.4 
 lbs S/million Btu -5.27 E-02 -1.9 observations = 66

Intercept  -5.87 -5.4 Rocky 
Mountain Btudmmf

2 -3.39 E-08 -5.7 adjusted R2 = 0.83

 Btudmmf  1.29 E-03 8.0 std. error = 0.20
 MMParr,dry -4.31 E-02 -40.5 
 lbs S/million Btu  2.41 E-02 1.7 observations = 641

Intercept  1.88 0.5 
Btudmmf

2  5.98 E-09 0.3 adjusted R2 = 0.72

Btudmmf  1.64 E-04 0.3 std. error = 0.19

Northern   
Great Plains, 
Pacific Coast 

MMParr,dry -3.88 E-02 -20.4 
 lbs S/million Btu  3.80 E-03 0.3 observations = 502

Intercept -35.66 5.9 High Rank  
(mvb to lvb) Btudmmf

2 -1.66 E-07 6.1 adjusted R2 = 0.52

 Btudmmf  5.20 E-03 -6.0 std. error = 0.28
 MMParr,dry -4.19 E-02 1.4 
 lbs S/million Btu  3.91 E-02 -1.6 observations = 362

(anthracite) Intercept 209.20 5.9 
 Btudmmf

2  1.02 E-06 6.1 
adjusted R2 = 0.67

 Btudmmf -2.92 E-02 -6.0 std. error = 0.38
 MMParr,dry  1.74 E-02 1.4 
 lbs S/million Btu -4.78 E-01 -1.6 observations = 25
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Figure 6.  A near 1:1 relationship is observed between the measured PSU-DOE hydrogen values 

(Hmeasured) and predicted PSU-DOE hydrogen values (Hpredicted).  The predicted hydrogen values were 

calculated using equations described in table 2 (in text).  The points represent individual PSU-DOE data 

records selected to have Mott-Spooner difference values within ±250 Btu.  Error bars illustrate an assay 

reproducibility of ±0.3% hydrogen (ASTM, 2000b) and show that most of the scatter is explained by the 

precision of the hydrogen assay. 

 

Verification of Calculated ICR Net Heating Values  

The predicted hydrogen, estimated moisture, and measured Btu values were used with 

equation 1 to calculate the average net heating value for 169 counties represented in the ICR data 

set.  The county-average results show that the net heating value is about 4.5% less than the gross 

heating value.  This is similar to the 5% difference assumed by the reference method to verify 

greenhouse gas emissions for the Kyoto Protocol (Houghton and others, 1997).  However, as 

shown in figure 7, the difference between the net and gross heating value varies with coal rank.  
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The net heating value of lignite is about 10 percent less than its gross heating value; the 

difference smoothly declines through the coalification series to reach a minimum (1 to 2 percent 

difference) at the anthracite stage.  Figure 7 also shows that the net heating values predicted for 

the county-average ICR data mimic those calculated using the (measured) PSU-DOE moisture 

and hydrogen values.  
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Figure 7.  The difference between the net and gross heating value of U.S. coal from two data sets 

systematically varies with ASTM (1990) coal rank.  The percent difference between the gross heating 

value of coal (Btugross), and the calculated net heating value (Btunet) corresponds to: 

)(
100

netgross

gross

BtuBtu
Btu

DifferencePercent
−

= .  The PSU-DOE data points represent single coal assays on an 

equilibrium moisture basis.  The ICR data points represent county-average values on an estimated, as-

shipped moisture basis. 
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Parameters for Mapping and Draft Maps (Tasks 5 and 6) 

Examination data from fuel and flue gas assays for about 80 electric utility boilers 

(USEPA, 2003) has shown that mercury capture from flue gas varies according to coal 

composition, boiler operation and type, and the configuration of pollution emission controls 

(Pavlish and others, 2003).  Various research groups (Chu and others, 2000; Robertson, 2002; 

ENSR 2003; SAIC, 2003; Maxwell, 2003; AEMS, 2004) have used these assay data to develop 

regression equations that predict the efficiency of mercury removal from flue gas for power 

plants classified by boiler type and emission controls.  Independent variables used in these 

equations include the coal heating value, chlorine content, and sulfur content.   

Figures 8, 9, and 10 are maps that respectively show the potential uncontrolled sulfur, 

mercury, and chlorine emissions of U.S. coal by county-of-origin.  These potential emission rates 

were calculated using the ICR data and equations for parameters A, B, and C listed table 3.  

Similar maps (figures 11 to 15) show predicted mercury emissions for coal burned in power 

plants classified by emission control technology; these maps were created using the ICR data and 

equations from SAIC (2003), which correspond to parameters D, E, F, G, and H listed in table 3.  

Finally, maps showing output-based mercury emissions (lbs Hg/gigawatt-hour) for U.S. coal by 

county-of-origin were made for two emission control technologies (cold-side ESP-FGD 

technology, and fabric filter technology; figures 16 and 17).  The output based emission rates 

were calculated using ICR data expressed on a net energy basis, SAIC equations, and a nominal 

heat rate of 35% (parameters I and J, table 3). 

 

 



 
 

 18

Table 3. Selected parameters for mapping.  
 

 Parameter Emission 
Control Parameter Calculation 

A lbs S/106 Btu uncontrolled  = 106/Btu× S/100 

B lbs Hg/1012 Btu uncontrolled  = 1012/Btu× Hg/106  
    (note: Bnet is calculated using Btunet and Hgmoist) 

C lbs Cl/ 109 Btu uncontrolled  = 109/Btu× Cl/106 

D lbs Hg/1012 Btu cold-side ESP = B× [1 – exp(0.031 – 0.003929× C/A)] 

E lbs Hg/1012 Btu cold-side ESP 
+ FGD 

= B× [1 – exp(1.8529 – 0.27149× ln(C× 1000))] 

F lbs Hg/1012 Btu hot-side ESP = B× [1 – exp(0.0759 – 0.003816× C)] 

G lbs Hg/1012 Btu hot-side ESP + 
FGD 

= B× [1 – exp(2.7019 – 0.29952× ln(C× 1000))] in
pu

t-b
as

ed
 c

al
cu

la
tio

n 

H lbs Hg/1012 Btu SDA + FF = B× [1 – exp(10.7111 – 1.22628× ln(C× 1000))] 

I lbs Hg/TW-h cold-side ESP 
+ FGD 

= Bnet× [1 – exp(1.8529 – 0.27149× ln(C – 1000))]× 10.26

ou
tp

ut
-

ba
se

d 
ca

lc
ul

at
io

n 

J lbs Hg/TW-h SDA + FF = Bnet× [1 – exp(10.7111 – 1.22628× ln(C× 1000))]× 10.26

 
Notes to Table:  

ESP Electrostatic Precipitator 
FGD wet Flue Gas Desulfurization 
SDA Spray Dry Adsorption 
FF Fabric Filter 
Btu  gross British thermal units per pound (ICR data, dry basis) 
S wt.% Sulfur (ICR data, dry basis) 
Hg µg/g Mercury (ICR data, dry basis) 
Cl  µg/g Chlorine (ICR data, dry basis) 
Bnet pounds Hg/1012 Btunet 

Hgmoist is the ICR mercury value (dry µg/g Hg) adjusted to a moist basis according to: 
Hgmoist = Hg  (100-M)/100, using estimated moisture (M) values for the ICR data aggregated by 
county-of-origin. 

Btunet  is the ICR gross heating value (dry, Btu/lb) adjusted to a net, moist basis according to: Btunet = 
(Btu× (100-M)/100) – 90.3× [(M× 0.1119)+H], where M is the estimated moisture for the ICR data 
aggregated by county-of-origin, H is the corresponding moist-basis hydrogen value (also 
estimated) which excludes hydrogen in moisture. 

Equations for parameters D to J are adopted from table 4-3 in SAIC (2003), with the coefficient used for 
parameters I and J (10.26) selected to approximate a heat rate of 35% (exactly 9,750 gross Btu/kilowatt-
hour, which is approximately 10,260 net Btu/kilowatt-hour).  
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RESULTS AND DISCUSSION 

Draft maps showing the potential mercury and acid-gas emissions from coal combustion, by U.S. 

county-of-origin were constructed using selected ICR coal quality data, and technology-specific 

equations that predict mercury capture (SAIC, 2003).  In this section we evaluate the coal assay 

data that these maps are based on and conclude with a brief discussion of the significance and 

limitations of the draft maps.  

 
Evaluation of Coal Assay Data 

Coal assay data used in this study include: 

• 19,507 FERC 423 data records from 187 U.S. counties (USEIA, 2003a),  

• 25,818 ICR data records from 169 U.S. counties (USEPA, 2003),  

• 5,602 CTRDB data records from 116 U.S. counties (USEIA, 2003b),  

• 5,045 COALQUAL data records from 340 U.S. counties (Bragg and others, 1997), and 

• 73 PSU-DOE data records from 47 U.S. counties (Anonymous, 1990; Davis and Glick, 1993; 

Scaroni and others, 1999).   

The ICR data are the foundation of the draft maps (figures 8 to 17), whereas the COALQUAL, 

FERC 423, CTRDB, and PSU-DOE data were used to estimate ICR moisture and hydrogen 

values, and to verify these estimates and their derived values.  Comparison of these data sets 

shows data limitations, provides geochemical insights, and suggests mercury mitigation 

strategies.    

County-average, moisture, ash, sulfur, and Btu/lb values for four data sets are compared 

in figures 18 and 19.  Note that the data sets compared in figure 18 are populated by different 

numbers of counties, whereas the comparisons shown in figure 19 only include counties that are 

common to both the ICR, and the FERC 423, CTRDB, or COALQUAL data sets. 
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Figure 18.  Histograms showing the distribution of county-average coal quality values for the COALQUAL, 

FERC 423, ICR, and CTRDB data sets.  Moisture, ash, and sulfur values are expressed on a moist, 

whole-coal basis, whereas the Btu/lb values are expressed on a moist, mineral-matter-free basis, 

calculated after ASTM (1990).  
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Figure 19.  Cross-plots comparing the county-average moisture, ash, sulfur, and Btu values from the ICR 

data set with those from the CTRDB, COALQUAL, and FERC 423 data sets; the Btu/lb values were 

calculated after ASTM (1990). 
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Figures 18 and 19 show reasonably good agreement between the data sets, especially for 

data corresponding to commercial coal shipments (FERC 423, CTRDB, and ICR).  The 

correlation between the ICR and FERC 423 sulfur values shown in figure 19 deserves comment.  

Despite the good correlation, a few counties deviate from the 1:1 line.  Many of these deviations 

can be attributed to instances where the county-average values are calculated from one or two 

data records.  However a few instances may indicate potential bias in ICR data.  Given that the 

ICR data relied on periodic assays, and include a disproportionate number of records for small 

(<50 MW) utilities, it is likely that the FERC 423 data better represent the quality of commercial 

U.S. coal than the ICR data.  Moreover, sulfur exhibits a positive correlation with mercury for 

aggregated data (Quick and others, 2003).  Consequently, instances where ICR sulfur is higher 

than FERC 423 sulfur may indicate erroneously high county-average ICR mercury values.  

Conversely, instances where the ICR sulfur is lower than the FERC 423 sulfur may indicate 

erroneously low county-average ICR mercury values.   

The larger number of counties included in the COALQUAL data set should be 

considered when evaluating the data distributions shown in figure 18.  For example, the 

relatively high, average moisture value for the 340 counties listed in the COALQUAL data set 

(figure 18) is a result of the comparatively large number of counties in the COALQUAL data set 

with high-moisture (low-rank) coal.  Thus, the relatively high average COALQUAL moisture 

value shown in figure 18 is due to a geographic, rather than analytical, bias.  Restricting the 

comparison of moisture values to common counties (figure 19) shows that the COALQUAL 

assay moisture values are actually relatively low.  Although the relatively low COALQUAL 

moisture values may relate to added moisture from washing of commercial coal (ICR and 

CTRDB data), moisture loss prior to analysis of the COALQUAL coal samples is probably more 
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significant.  Indeed, Bragg and others (1997) noted that the calculated ASTM rank for some 

COALQUAL data records might be anomalously high due to air-drying of the samples before 

analysis.  The low COALQUAL moisture values due to assay bias are also consistent with the 

relatively high, moist-basis COALQUAL Btu/lb values (figure 19).2    

As noted earlier in this report, systematically low COALQUAL moisture values 

complicate the evaluation of rank and the calculation of net heating values.  Fortunately, the low 

moisture values have little effect on COALQUAL emission factors expressed on an energy basis.  

For example, the calculation of pounds sulfur per million Btu gives the same result regardless of 

whether moist-basis sulfur and Btu/lb values, or dry-basis sulfur and Btu/lb values, are used for 

the calculation.  Figures 20 and 21 compare ICR sulfur, mercury, and chlorine values expressed 

on an energy-basis to equivalent COALQUAL values.  

 

                                                 
2 As noted in an earlier report (Quick and others, 2004), it was necessary to adjust some COALQUAL assay values 
(notably Hg and Cl) for unmeasured residual moisture in the analysis specimen.  This systematic bias was the result 
of the sample preparation method for inorganic assays, and is not related to the moisture bias described here (which, 
with few exceptions, only influences the proximate, ultimate, and sulfur form analyses). 
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Figure 20. Distribution of county-average, mercury, chlorine and sulfur values for in-ground coal 

(COALQUAL DATA) and commercial coal (ICR DATA). 
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Figure 21.  Comparison of mercury, chlorine, and sulfur values in the ICR and COALQUAL data sets.  

Data points show average values for U.S. counties common to both data sets. 



 
 

 35

When examining figures 20 and 21 it is useful to recognize that the COALQUAL data 

indicate the quality of the in-ground coal resource, whereas the ICR data indicate the quality of 

commercial coal produced during 1999.  Differences between the COALQUAL and ICR data are 

inevitable because the COALQUAL data include additional records for coal beds that are not 

mined.  Nonetheless, comparison of these data is instructive.  Figure 20 shows higher sulfur and 

mercury values for the COALQUAL data than the ICR data.  Quick and others (2003) also 

observed higher COALQUAL sulfur and mercury values, which they attributed to selective 

mining of low-sulfur and low-mercury coal, as well as reduction of sulfur and mercury due to 

washing of mined coal.  However, figure 21a shows that the mercury content of in-ground coal 

(COALQUAL data) is not always lower than the mercury content of commercially shipped coal 

(ICR data) when the comparison is restricted to coal from common counties-of-origin.  Counties 

where the mined coal contains more mercury than indicated by the COALQUAL data are 

colored red in figure 22.  The reason for the higher mercury content of coal mined in these areas 

may be the combined result of limited washing, and contamination of mined coal by high-

mercury partings, roof rock, or floor rock; these contaminants are generally not included in 

COALQUAL assay specimens because USGS sample collections guidelines (Swanson and 

Huffman, 1976) require partings more than 5 mm thick to be excluded from the analysis sample.  

Increased coal washing may be an effective Hg reduction strategy in instances where the ICR 

mercury values are greater than the COALQUAL mercury values.  Green areas on figure 22 

show where mined coal contains substantially less Hg than the in-ground resource.  Selective 

mining and/or extensive coal washing probably explain these occurrences.  For a few counties, 

these differences may simply indicate bias in the ICR data (suggested by the different FERC 423 
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and ICR sulfur values, discussed above) or instances where the county average values are based 

on only a few data records.   

The different chlorine distributions for the COALQUAL and ICR data shown in figure 20 

suggest preferential mining of counties with high-chlorine coal.  However, such inferences are 

uncertain given the limitations of the chlorine assays.  For example, nearly 30% of the 

COALQUAL chlorine values are reportedly below the assay detection limit (Bragg and others, 

1997).  Although only 14% of the selected ICR records are reportedly below the detection limit, 

this is probably a minimum value.  Nyberg (2003) notes that methods used to determine chlorine 

concentrations in the ICR data collection effort were unreliable below 200 parts-per-million 

(ppm or µg/g).  Thirty percent of the selected ICR data records show dry chlorine at or below 

200 ppm.  Moreover, figure 23 shows that western U.S. counties are responsible for a 

disproportionate share of the low-chlorine ICR data records.  



   

37

 

C
oa

lfi
el

d 
ex

te
nt

D
iff

er
en

ce
 b

et
w

ee
n 

H
g 

co
nt

en
t o

f 
in

-g
ro

un
d 

co
al

 (C
O

AL
Q

U
AL

 d
at

a)
an

d 
H

g 
in

 m
in

ed
 c

oa
l (

IC
R

 d
at

a)
lb

s 
H

g 
pe

r t
ril

lio
n 

B
tu

+3
3 

to
 +

15

+1
5 

to
 +

5

+5
 to

 -5

-5
 to

 -1
0

-1
0 

to
 -3

0KE
Y

M
O

R
E

 H
g 

in
 

m
in

ed
 c

oa
l t

ha
n

in
-g

ro
un

d 
co

al

LE
S

S 
H

g 
in

 
m

in
ed

 c
oa

l t
ha

n
in

-g
ro

un
d 

co
al

 
Fi

gu
re

 2
2.

  T
he

 d
iff

er
en

ce
 b

et
w

ee
n 

th
e 

m
er

cu
ry

 c
on

te
nt

 o
f i

n-
gr

ou
nd

 c
oa

l (
C

O
AL

Q
U

A
L 

da
ta

) a
nd

 th
e 

m
er

cu
ry

 c
on

te
nt

 o
f m

in
ed

 c
oa

l (
IC

R
 d

at
a)

 

va
rie

s 
ge

og
ra

ph
ic

al
ly

 (c
ou

nt
y-

av
er

ag
e 

C
O

A
LQ

U
A

L 
H

g 
m

in
us

 c
ou

nt
y-

av
er

ag
e 

IC
R

 H
g,

 e
xp

re
ss

ed
 a

s 
lb

s 
H

g/
10

12
 B

tu
). 



   

38

 
  

C
oa

lfi
el

d 
ex

te
nt

C
hl

or
in

e 
C

on
te

nt
pp

m
 C

l (
dr

y)

< 
20

0

20
0 

- 6
00

60
0 

- 1
,0

00

1,
00

0 
- 1

,5
00

1,
50

0 
- 2

,5
00

> 
2,

50
0

KE
Y

Fi
gu

re
 2

3.
  A

ve
ra

ge
 c

hl
or

in
e 

co
nt

en
t o

f c
oa

l d
el

iv
er

ed
 to

 U
.S

. p
ow

er
 p

la
nt

s 
du

rin
g 

19
99

, b
y 

co
un

ty
-o

f-o
rig

in
 (c

al
cu

la
te

d 
us

in
g 

se
le

ct
ed

 IC
R

 d
at

a)
. 



 
 

 39

Evaluation of Technology-Specific Hg Emissions 

Figures 11 to 17 show the predicted county-average mercury emissions for coal burned in 

power plants classified by emission control technology.  Note that these are draft figures and will 

likely be modified.  About 70% of existing coal-fired utility boilers rely on either hot-side or 

cold-side ESP technology for emission control (Pavlish and others, 2003).  Figures 11 and 13 

show that eastern bituminous coal will rarely achieve the proposed MACT emission limit (2 lb 

Hg/1012 Btu) for this substantial technology class.  Likewise, no mercury compliance coals for 

these power plants are indicated for western bituminous coal (this includes 100% of Arizona and 

Utah production, 75% of Colorado production, and 38% of New Mexico production).  

Conversely, county-average values for most western subbituminous coal are below the proposed 

MACT limit (5.8 lb Hg/1012 Btu).  Given the higher MACT limit proposed for subbituminous 

coal compared to bituminous coal (table 1), switching to subbituminous coal may be an attractive 

compliance option for western power plants with ESP emission controls. 

Considering the proposed MACT limit for plants burning lignite (9.2 lb Hg/1012 Btu), the 

results for Northern Great Plains or Gulf Coast lignite burned in ESP equipped power plants are 

mixed.  For example, in the Northern Great Plains, mercury compliance coal is indicated for 

Oliver Co., North Dakota and Richland Co., Montana, whereas the more significant coal 

production from McLean and Mercer Counties, North Dakota exceeds the proposed MACT 

limit.   

About 12% of U.S. coal-fired utility boilers use FGD technology (Pavlish and others, 

2003).  Figures 12 and 14 show that the addition of FGD technology reduces mercury emissions, 

especially when combined with a cold-side ESP.  Compared to ESP technology alone, there are 

more examples of mercury compliance coal for power plants equipped with FGD technology.  
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However, despite better mercury capture using FGD, figures 12 and 14 show most bituminous 

coal-producing counties still exceed the proposed MACT limit if burned in plants using ESP-

FGD emission controls.   

Spray-dry-adsorption, fabric filter technology (SDA-FF) is used at about 4% of U.S. 

coal-fired utility boilers.  Figure 15 indicates mercury compliance for bituminous coal from most 

counties when burned in power plants equipped with SDA-FF technology.  However, the 

performance of SDA-FF technology is unlikely to be as good as indicated.  Mercury emissions 

indicated by figure 15 are based on the county-average coal mercury and chlorine values, and the 

mercury emission rate was calculated using equation H listed in table 4.  Figure 24 shows that 

the percent reduction of mercury emissions predicted by equation H (blue circles, SAIC 2003, 

model 1) is greater than what is predicted by other model equations.  Consequently, the SAIC 

(2003) model is the most optimistic.   

Although the different models for fabric filter technology shown in figure 24 clearly 

differ, they all indicate greater than 90% mercury capture above 1,200 ppm chlorine, as well as 

substantial sensitivity of predicted mercury capture when chlorine concentrations are below 

about 200 ppm.  The sensitivity of the models below 200 ppm chlorine has special significance 

to western U.S. coal, given that the ICR chlorine assays are unreliable below this concentration 

(Nyberg, 2003), and that western U.S. coal commonly contains less than 200 ppm chlorine 

(figure 23).   
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r2 = 0.60
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= 0.2854Ln(Clppm, dry) - 1.1302
n = 11
r2 = 0.91

 
Figure 24.  Five model equations predict increasing mercury capture by fabric filter emission controls with 

increasing coal chlorine concentration.  Note that the SAIC (2003) model 1 equation was used to predict 

emissions in figures 15 and 17 of this report.  Data points show county-average ICR chlorine values - and 

their variously predicted mercury capture efficiencies - for 184 U.S. counties; not shown are 46 U.S. 

counties where the average chlorine concentration is more than 1,200 ppm. 

 

 

CONCLUSIONS 

Draft maps showing potential sulfur, chlorine, and mercury emissions for U.S, coals by 

county-of origin, show the following:  

• As generally known, high-sulfur coal is produced in the Northern Appalachian 

Region, as well as Eastern Interior, Western Interior, and Gulf Coast provinces, 

whereas low-sulfur coal is produced from the Central Appalachian Region and the 

western U.S. 
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• High-mercury coal is produced in parts of Oklahoma, Texas, Ohio, Pennsylvania, 

Kentucky, Alabama, and Tennessee, whereas low-mercury coal is common in the 

western U.S., Eastern Interior Province, and the Central Appalachian Region. 

• Coal from the Northern Appalachian Region (Ohio and parts of Pennsylvania) has 

notably high mercury concentrations, compared to other U.S. coal.   

• Western U.S. coal typically contains less than 200 ppm chlorine, whereas eastern 

U.S. coal generally contains more than 600 ppm chlorine. 

• Much subbituminous and some lignite coal should comply with the proposed MACT 

rule using existing technology.  Bituminous compliance coal for power plants with 

ESP controls is rare.  Plants equipped with FGD controls may find bituminous 

compliance coal in some western U.S. counties, the Eastern Interior Province, and the 

Central Appalachian Region.  With notable exceptions (for example, certain counties 

in Ohio, Alabama, and the western U.S.), fabric filter technology may be an effective 

technology for most bituminous coal.   
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